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Summary
This supplement contains technical details and formulas omitted from the main text,
proofs of all theoretical results, further technical and methodological derivations, and
details on practical and numerical implementations.

S.1. SETUP, NOTATION, AND ASSUMPTIONS

We assume the researcher observes a random sample (Yi, Ti, Xi)
′, i = 1, 2, . . . , n, where

Yi denotes the outcome variable of interest, Ti denotes treatment status, and Xi denotes
an observed continuous score or running random variable, which determines treatment
assignment for each unit in the sample. In the canonical sharp RD design, all units with
Xi not smaller than a known threshold c are assigned to the treatment group and take-up
treatment, while all units with Xi smaller than c are assigned to the control group and do
not take-up treatment, so that Ti = 1(Xi ≥ c). Using the potential outcomes framework,
Yi = Yi(0) · (1 − Ti) + Yi(1) · Ti, with Yi(1) and Yi(0) denoting the potential outcomes
with and without treatment, respectively, for each unit.

The parameter of interest in sharp RD designs are either the average treatment effect
at the cutoff or its derivatives. Thus, herein we study the generic population parameter,
for some integer ν ≥ 0:

τν = τν(c) =
∂ν

∂xν
E[Yi(1)− Yi(0)|Xi = x]

∣∣∣∣
x=c

, (S.1.1)

Here and elsewhere we drop evaluation points of functions when it causes no confusion.
With this notation, τ0 corresponds to the standard sharp RD estimand, while τ1 denotes
the sharp kink RD estimand (up to scale).

1A preliminary version of this paper circulated under the title “Coverage Error Optimal Confidence In-
tervals for Regression Discontinuity Designs” (first draft: June 26, 2016). We thank Josh Angrist, Zhuan
Pei, Rocio Titiunik, and Gonzalo Vazquez-Bare for comments. Cattaneo gratefully acknowledges finan-
cial support from the National Science Foundation (SES 1357561 and SES 1459931). Farrell gratefully
acknowledges financial support from the Richard N. Rosett and John E. Jeuck Fellowships.



S.1.1. Local Polynomial Point Estimation

Will not give a complete treatment of local polynomial estimation here. For background,
careful derivations of the results and formulas herein, and further technical details, see
the following: Fan and Gijbels (1996) for background, Calonico, Cattaneo, and Titiunik
(2014) in the context of RD specifically, and Calonico, Cattaneo, and Farrell (2018, 2019)
for further technical details particularly in the context of Edgeworth expansions.

We estimate τν by taking the difference of two local polynomial estimators, from each
side of c. Define the coefficients of the (one-sided, weighted) local regressions:

β̂− = β̂−,p(h) = arg min
b∈Rp+1

n∑
i=1

(Yi − rp(Xi − c)′b)2K− (Xh,i) =
1

nhν
Γ−1−,pΩ−,pY ,

β̂+ = β̂−,p(h) = arg min
b∈Rp+1

n∑
i=1

(Yi − rp(Xi − c)′b)2K+ (Xh,i) =
1

nhν
Γ−1+,pΩ+,pY ,

(S.1.2)

where:

• p is an integer greater than min{1, ν},
• ek is a conformable zero vector with a one in the (k + 1) position, for example eν

is the (p+ 1)-vector with a one in the νth position and zeros in the rest,
• rp(u) = (1, u, u2, . . . , up)′,
• h is a positive bandwidth sequence that vanishes as n diverges,
• Xh,i = (Xi − c)/h, for a bandwidth h and point of interest c,
• K−(u) = 1{u < 0}K(u) and K+(u) = 1{u ≥ 0}K(u) for a kernel function
K(u), with in particular K−(Xh,i) = 1(Xi < c)K(Xh,i) and K+(Xh,i) = 1(c ≤
Xi)K(Xh,i),
• to save space, products of functions will often be written together, with only one

argument, for example

(Krpr
′
p)(Xh,i) := K(Xh,i)rp(Xh,i)rp(Xh,i)

′ = K

(
Xi − c
h

)
rp

(
Xi − c
h

)
rp

(
Xi − c
h

)′
,

• Γ−,p = 1
nh

∑n
i=1(K−rpr

′
p)(Xh,i) and Γ+,p = 1

nh

∑n
i=1(K+rpr

′
p)(Xh,i),

• Ω−,p = h−1[(K−rp)(Xh,1), . . . , (K−rp)(Xh,n)] and Ω+,p = h−1[(K+rp)(Xh,1), . . . , (K+rp)(Xh,n)],
and
• Y = (Y1, . . . , Yn)′.

We maintain the same bandwidth and kernel function on both sides of the cutoff for
notational simplicity. Accommodating different bandwidths, which share a rate of decay,
is only a matter of notational burden. At the expense of substantial complication, any
aspect of the local polynomial fit on one side can be different from the other, including
the bandwidth rate and the order p; all the results will still hold in principle. As this
approach is rarely taken in practice, we decide not to introduce the complication.

The standard point estimator of the parameter of interest τν of Equation (S.1.1) is
then the difference of the appropriate two entries from the one-sided coefficient vectors:

τ̂ν = τ̂ν,US = τ̂ν(h) = ν!e′νβ̂+ − ν!e′νβ̂− =
1

nhν
ν!e′ν

(
Γ−1+,pΩ+,p − Γ−1−,pΩ−,p

)
Y , (S.1.3)

which is also denoted τ̂ν,US to explicitly refer to the fact that undersmoothing is required
for valid inference. Compared to the main text, we will often drop the dependence on
the bandwidth unless it is required to make a specific point.
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S.1.2. Assumptions

Let g(s)(x) = ∂νg(x)/∂xν for any sufficiently smooth function g(·), with g(x) = g(0)(x)
to save notation.

Assumption S.1.1. (RD) For some S > p ≥ min{1, ν} and all x ∈ [xl, xu], where
xl < c < xu,

(a) the Lebesgue density of Xi, denoted by f(x), is positive and continuous,
(b) µ−(x) = E[Yi(0)|Xi = x] and µ+(x) = E[Yi(1)|Xi = x] are S times continuously

differentiable, with µ
(S)
− (x) and µ

(S)
+ (x) Hölder continuous with exponent a ∈ (0, 1],

and
(c) E[|Yi(t)|δ|Xi = x] continuous, for t ∈ {0, 1} and δ > 8, with σ2

−(x) = V[Yi(0)|Xi =
x] and σ2

+(x) = V[Yi(1)|Xi = x] positive and continuous, and
(d) the Lebesgue density of (Y (t), X), fytx(·), is positive and continuous.

The only difference between this assumption and its counterpart in the main text is
that we have defined the function µ+, µ−, σ2

+(x), and σ2
−(x), which we will need later.

With this notation the parameter of interest is (cf. (S.1.1))

τν = τν(c) =
∂ν

∂xν
E[Yi(1)− Yi(0)|Xi = x]

∣∣∣∣
x=c

= µ
(ν)
+ (c)− µ(ν)

− (c)

and the standard point estimator is (cf. (S.1.3))

τ̂ν = τ̂ν,US = τ̂ν(h) = ν!e′νβ̂+ − ν!e′νβ̂− = µ̂
(ν)
+ (c)− µ̂(ν)

− (c).

The conditions on the kernel function are as follows.

Assumption S.1.2. (Kernel) K(u) = 1(u < 0)k(−u) + 1(u ≥ 0)k(u), where k(·) :
[0, 1] 7→ R is bounded and continuous on its support, positive (0, 1), zero outside its
support, and either is constant or (1,K(u)r3(p+1)(u)′) is linearly independent on (0, 1).

S.2. TECHNICAL DETAILS AND FORMULAS OMITTED FROM THE MAIN
TEXT

In this section we state formulas and technical details omitted from the main text. These
consist of bias and variance terms and their estimators and the terms of the coverage
error expansion. Throughout we maintain Assumptions S.1.1 and S.1.2 with S ≥ p + 1,
or, where mentioned, S ≥ p + 2. Derivations of many of the formulas in the first two
subsections can be found in Calonico, Cattaneo, and Titiunik (2014). When sufficient
smoothness does not exist, the results of Calonico, Cattaneo, and Farrell (2018, 2019)
apply.

Recall from Equation (S.1.3) that the standard point estimator of the parameter of
interest τν of Equation (S.1.1) is the difference of the appropriate two entries from the
one-sided coefficient vectors,

τ̂ν = τ̂ν(h) = ν!e′νβ̂+ − ν!e′νβ̂− =
1

nhν
ν!e′ν

(
Γ−1+,pΩ+,p − Γ−1−,pΩ−,p

)
Y ,

which will also be denoted τ̂ν,US to explicitly refer to the fact that undersmoothing is
required for valid inference.
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S.2.1. Bias and Bias Correction

The conditional bias of τ̂ν obeys

E
[
τ̂ν
∣∣X1, . . . , Xn

]
− τν = hp+1−νB + oP (hp+1−ν),

where B =
ν!

(p+ 1)!
e′ν

(
Γ−1+,pΛ+,pµ

(p+1)
+ − Γ−1−,pΛ−,pµ

(p+1)
−

)
,

(S.2.1)

with

• Λ+,p = Ω+,p

[
Xp+1
h,1 , . . . , X

p+1
h,n

]′
/n and similarly for Λ−,p, and

• µ(p+1)
+ = ∂ν

∂xν E[Y (1)|Xi = x]
∣∣
x=c

, and similarly for µ
(p+1)
− , see Assumption S.1.1.

The bias of (S.2.1) is first-order important without further steps. See the main paper for
discussion. Because its asymptotic order is hp+1−ν , undersmoothing relies on a “small”
bandwidth choice, i.e. one assumed to vanish rapidly enough to render this bias ignorable.
Robust bias correction involves estimating B and subtracting this estimate from the
point estimator τ̂ν . The estimator of B will also be based on one-sided local polynomial
regressions, of exactly the same form as (S.1.2) but with the degree of the polynomial
one order higher, q = p+ 1 (see Remark S.2.1), and a bandwidth b defined as b = ρ−1h.
Specifically,

τ̂ν,BC = τ̂ν − hp+1−νB̂ =
1

nhν
ν!e′ν

(
Γ−1+,pΩ+,BC − Γ−1−,pΩ−,BC

)
Y , (S.2.2)

where

B̂ =
ν!

(p+ 1)!
e′ν

(
Γ−1+,pΛ+,pµ̂

(p+1)
+ − Γ−1−,pΛ−,pµ̂

(p+1)
−

)
, (S.2.3)

and

Ω+,BC = Ω+,p−ρp+1Λ+,pe
′
p+1Γ

−1
+,qΩ+,q and Ω−,BC = Ω−,p−ρp+1Λ−,pe

′
p+1Γ

−1
−,qΩ−,q

stemming from the estimation of the derivatives using local polynomials. That is,

µ̂
(p+1)
+ =

1

nbp+1
(p+1)!e′p+1Γ

−1
+,qΩ+,qY and µ̂

(p+1)
− =

1

nbp+1
(p+1)!e′p+1Γ

−1
−,qΩ−,qY ,

with

• an integer q ≥ p taken throughout to be q = p+ 1 (Calonico, Cattaneo, and Farrell
(2018) show why q = p + 1 is the optimal choice for coverage considerations. See
also Remark S.2.1) and

• b = ρ−1h is a positive bandwidth sequence that vanishes as n diverges.

Given these, the rest of the notation is defined analogously to the above, namely:

• rq(u) = (1, u, u2, . . . , uq)′,

• Xb,i = (Xi − c)/b, for a bandwidth b and point of interest c,

• Γ−,q = 1
nb

∑n
i=1(K−rqr

′
q)(Xb,i) and Ω−,q = b−1[(K−rq)(Xb,1), . . . , (K−rq)(Xb,n)]

and similarly for Γ+,q and Ω+,q.
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The bias of τ̂ν,BC itself is an important quantity for the coverage error expansions and
feasible inference-optimal bandwidth selectors. This is given by

E
[
τ̂ν,BC

∣∣X1, . . . , Xn

]
− τν =

{
O(hS+a−ν) if S ≤ p+ 1

hp+2−νBBC + oP (hp+2−ν) if S ≥ p+ 2,
(S.2.4)

where

BBC =
µ
(p+2)
+

(p+ 2)!
ν!e′νΓ

−1
+,p

{
Λ+,p,2 − ρ−1Λ+,pe

′
p+1Γ

−1
+,qΛ+,q

}
−

µ
(p+2)
−

(p+ 2)!
ν!e′νΓ

−1
−,p
{
Λ−,p,2 − ρ−1Λ−,pe′p+1Γ

−1
−,qΛ−,q

}
,

using the notation

• ρ = h/b,

• Λ+,p,k = Ω+,p

[
Xp+k
h,1 , . . . , X

p+k
h,n

]′
/n, with Λ+,p,1 = Λ+,p in particular, and simi-

larly for Λ−,p,k, and

• Λ+,q,k = Ω+,q

[
Xq+k
b,1 , . . . , Xq+k

b,n

]′
/n, with Λ+,q,1 = Λ+,q in particular, and simi-

larly for Λ−,q,k.

Remark S.2.1. (Setting q > p+ 1 or ρ→∞) It is possible to perform robust bias
correction with a polynomial order q > p+ 1 or with ρ → ∞, i.e. a bandwidth b asymp-
totically smaller than h. However, neither can improve coverage. The former will tend to
inflate variance constants and (to be made feasible) requires estimation of higher deriva-
tives, while the latter leads to a slower variance rate. To see why, first, the general form
of BBC, provided all derivatives exist (and if they do not, there is even less point to higher
q) will be

BBC =
µ
(p+2)
+

(p+ 2)!
ν!e′νΓ

−1
+,pΛ+,p,2 − ρ−1bq−p−1

µ
(q+1)
+

(q + 1)!
ν!e′νΓ

−1
+,pΛ+,pe

′
p+1Γ

−1
+,qΛ+,q

−
µ
(p+2)
−

(p+ 2)!
ν!e′νΓ

−1
−,pΛ−,p,2 − ρ−1bq−p−1

µ
(q+1)
−

(q + 1)!
ν!e′νΓ

−1
−,pΛ−,pe

′
p+1Γ

−1
−,qΛ−,q.

The order of the second term of each line decreases for higher q (provided the same h
sequence is assumed) because the bias of the bias estimator is decreasing. However, the
first term of each line, representing the bias not targeted for bias correction, is unchanged.
Thus, in rates, nothing can be gained from q > p+ 1.

Next, suppose that we allow ρ→∞. Again, the second term in each line is higher order
but the first is unchanged, and so the bias rate is not improved (unless q > p+1). However,
the variance of the estimator will now be determined by (nb)−1 instead of (nh)−1, that

is, the variance of the the derivative estimates µ̂
(p+1)
+ and µ̂

(p+1)
− is now the dominant

variance portion. Setting a finite, positive ρ balances these two.
See Calonico, Cattaneo, and Farrell (2018) for further discussion and an expansion

with general q in the context of local polynomial regression.
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S.2.2. Variance and Variance Estimators

To compute the conditional variance define the matrices

• Σ+ = diag(σ2
+(Xi) : i = 1, . . . , n), with σ2

+(x) = V[Y (1)|X = x] defined in As-
sumption S.1.1, and similarly for Σ−.

For τ̂ν , given in (S.1.3), we find

V
[
τ̂ν
∣∣X1, . . . , Xn

]
=

1

nh1+2ν
V ,

V = v2US =
h

n
ν!2e′ν

(
Γ−1+,pΩ+,pΣ+Ω′+,pΓ

−1
+,p + Γ−1−,pΩ−,pΣ−Ω′−,pΓ

−1
−,p

)
eν ,

(S.2.5)

where we simultaneously define V and v2US. These are identical, but it will frequently be
convenient to write vUS rather than V 1/2. Compared to the main text, we will often drop
the dependence on the bandwidth unless it is required to make a specific point, e.g., we
write V instead of V (h).

For τ̂ν,BC, given in (S.2.2), we find

V
[
τ̂ν,BC

∣∣X1, . . . , Xn

]
=

1

nh1+2ν
VBC,

VBC = v2BC =
h

n
ν!2e′ν

(
Γ−1+,pΩ+,BCΣ+Ω′+,BCΓ

−1
+,p + Γ−1−,pΩ−,BCΣ−Ω′−,BCΓ

−1
−,p

)
eν ,

(S.2.6)

where we simultaneously define VBC and v2BC. These are identical, but it will frequently be

convenient to write vBC rather than V
1/2
BC . Notice that the only change is replacing Ω+,BC

and Ω−,BC for Ω+,p and Ω−,p, as expected from comparing (S.2.2) and (S.1.3).
To estimate these variances we need only estimate the diagonal matrices Σ+ and Σ−.

Define

Σ̂+,p = diag
(

(Yi − rp(Xi − c)′β̂+,p)
2 : i = 1, . . . , n

)
,

Σ̂−,p = diag
(

(Yi − rp(Xi − c)′β̂−,p)2 : i = 1, . . . , n
)
,

Σ̂+,BC = diag
(

(Yi − rq(Xi − c)′β̂+,q)
2 : i = 1, . . . , n

)
,

and

Σ̂−,BC = diag
(

(Yi − rq(Xi − c)′β̂−,q)2 : i = 1, . . . , n
)
,

where β̂+,p and β̂−,p are given in Equation (S.1.2) and β̂+,q and β̂−,q are the same but
with b in place of h and q in place of p.

With these in hand, define

V̂ = v̂2US =
h

n
ν!2e′ν

(
Γ−1+,pΩ+,pΣ̂+,pΩ

′
+,pΓ

−1
+,p + Γ−1−,pΩ−,pΣ̂−,pΩ

′
−,pΓ

−1
−,p

)
eν

V̂BC = v̂2BC =
h

n
ν!2e′ν

(
Γ−1+,pΩ+,BCΣ̂+,BCΩ

′
+,BCΓ

−1
+,p + Γ−1−,pΩ−,BCΣ̂−,BCΩ

′
−,BCΓ

−1
−,p

)
eν

(S.2.7)

Other possibilities for standard errors exist, but retaining the fixed-n form is crucial
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for good coverage properties. For more discussion, including other options and practical
details, see Calonico, Cattaneo, and Farrell (2018, 2019).

S.2.3. Coverage Error Expansion Terms

We now give the precise definition of the terms QUS,k and QRBC,k, k = 1, 2, 3, appearing
the coverage error expansion in the main text. The final formulas appear at the end of
this subsection, and require a fair amount of notation to be defined first. See Section
S.4.1 for the computation of these terms.

We will maintain, as far as possible, fixed-n calculations. All terms must be nonrandom.
First, define the following functions, which depend on n, h, b, ν, p, and K, though this is
mostly suppressed notationally. These functions are all calculated in a fixed-n sense and
are all bounded and rateless.

L0
US(Xi) = ν!e′ν

{
Γ̃−1+,p(K+rp)(Xh,i)− Γ̃−1−,p(K−rp)(Xh,i)

}
;

L0
RBC(Xi) = L0

US(Xi)− ρp+1ν!e′νΓ̃
−1
+,pΛ̃+,pe

′
p+1Γ̃

−1
+,q(K+rp+1)(Xb,i)

+ ρp+1ν!e′νΓ̃
−1
−,pΛ̃−,pe

′
p+1Γ̃

−1
−,q(K−rp+1)(Xb,i);

L1
US(Xi, Xj) = ν!e′νΓ̃

−1
+,p

(
E[(K+rpr

′
p)(Xh,j)]− (K+rpr

′
p)(Xh,j)

)
Γ̃−1+,p(K+rp)(Xh,i)

− ν!e′νΓ̃
−1
−,p
(
E[(K−rpr

′
p)(Xh,j)]− (K−rpr

′
p)(Xh,j)

)
Γ̃−1−,p(K−rp)(Xh,i);

L1
RBC(Xi, Xj) = L1

US(Xi, Xj)

− ρp+1ν!e′νΓ̃
−1
+,p

{(
E[(K+rpr

′
p)(Xh,j)]− (K+rpr

′
p)(Xh,j)

)
Γ̃−1+,pΛ̃+,pe

′
p+1

+
(

(K+rp)(Xh,j)X
p+1
h,i − E[(K+rp)(Xh,j)X

p+1
h,i ]

)
e′p+1

+ Λ̃+,pe
′
p+1Γ̃

−1
+,q

(
E[(K+rp+1r

′
p+1)(Xb,j)]− (K+rp+1r

′
p+1)(Xb,j)

)}
Γ̃−1+,q(K+rp+1)(Xb,i)

− ρp+1ν!e′νΓ̃
−1
−,p

{(
E[(K−rpr

′
p)(Xh,j)]− (K−rpr

′
p)(Xh,j)

)
Γ̃−1−,pΛ̃−,pe

′
p+1

+
(

(K−rp)(Xh,j)X
p+1
h,i − E[(K−rp)(Xh,j)X

p+1
h,i ]

)
e′p+1

+ Λ̃−,pe
′
p+1Γ̃

−1
−,q
(
E[(K−rp+1r

′
p+1)(Xb,j)]− (K−rp+1r

′
p+1)(Xb,j)

)}
Γ̃−1−,q(K−rp+1)(Xb,i).

Further, define

εi = 1{Xi < c}ε−,i + 1{Xi ≥ c}ε+,i
v(Xi) = 1{Xi < c}σ2

−(Xi) + 1{Xi ≥ c}σ2
+(Xi).

Let I (“I” for Interval) stand in for either US or RBC.1 Define ṽ2I = E[h−1L0
I(X)2v(X)].

Now we define three functions QUS,k and QRBC,k, k = 1, 2, 3 which serve as the main
building blocks of the terms of the expansion, capturing in particular all dependence on
the data-generating process other than the bias. QI,1 is the most cumbersome notation-

1More precisely, with this generic “I” notation, I = RBC refers to quantities appearing in QRBC,k,
k = 1, 2, 3, i.e. those relevant for IRBC, which include notations with a subscript BC, such as vBC.
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ally. Begin with the others. Define

QI,2(z) = −ṽ−2I {z/2}

and

QI,3(z) = ṽ−4I E[h−1L0
I(Xi)

3ε3i ]
{
z3/3

}
.

For QI,1, it is not quite as simple to state a generic version. Let G̃+ stand in for Γ̃+,p

or Γ̃+,q and similarly for G̃−, p̃ stand in for p or p + 1, and dn stand in for h or b, all
depending on whether T = TUS or TRBC. Note however, that h is still used in many places,
in particular for stabilizing fixed-n expectations, for TRBC. Indexes i, j, and k are always
distinct (i.e. Xh,i 6= Xh,j 6= Xh,k).

QI,1(z) = ṽ−6I E
[
h−1L0

I(Xi)
3ε3i
]2 {

z3/3 + 7z/4 + ṽ2Iz(z
2 − 3)/4

}
+ ṽ−2I E

[
h−1L0

I(Xi)L1
I(Xi, Xi)ε

2
i

] {
−z(z2 − 3)/2

}
+ ṽ−4I E

[
h−1L0

I(Xi)
4(ε4i − v(Xi)

2)
] {
z(z2 − 3)/8

}
− ṽ−2I E

[
h−1L0

I(Xi)
2rp̃(Xdn,i)

′G̃−1+ (K+rp̃)(Xdn,i)ε
2
i

] {
z(z2 − 1)/2

}
− ṽ−2I E

[
h−1L0

I(Xi)
2rp̃(Xdn,i)

′G̃−1− (K−rp̃)(Xdn,i)ε
2
i

] {
z(z2 − 1)/2

}
− ṽ−4I E

[
h−1L0

I(Xi)
3rp̃(Xdn,i)

′G̃−1+ ε2i

]
E
[
h−1(K+rp̃)(Xdn,i)L0

I(Xi)ε
2
i

] {
z(z2 − 1)

}
− ṽ−4I E

[
h−1L0

I(Xi)
3rp̃(Xdn,i)

′G̃−1− ε2i

]
E
[
h−1(K−rp̃)(Xdn,i)L0

I(Xi)ε
2
i

] {
z(z2 − 1)

}
+ ṽ−2I E

[
h−2L0

I(Xi)
2(rp̃(Xdn,i)

′G̃−1+ (K+rp̃)(Xdn,j))
2ε2j

] {
z(z2 − 1)/4

}
+ ṽ−2I E

[
h−2L0

I(Xi)
2(rp̃(Xdn,i)

′G̃−1− (K−rp̃)(Xdn,j))
2ε2j

] {
z(z2 − 1)/4

}
+ ṽ−4I E

[
h−3L0

I(Xj)
2rp̃(Xdn,j)

′G̃−1+ (K+rp̃)(Xdn,i)L0
I(Xi)rp̃(Xdn,j)

′G̃−1+ (K+rp̃)(Xdn,k)L0
I(Xk)ε2i ε

2
k

]
×
{
z(z2 − 1)/2

}
+ ṽ−4I E

[
h−3L0

I(Xj)
2rp̃(Xdn,j)

′G̃−1− (K−rp̃)(Xdn,i)L0
I(Xi)rp̃(Xdn,j)

′G̃−1− (K−rp̃)(Xdn,k)L0
I(Xk)ε2i ε

2
k

]
×
{
z(z2 − 1)/2

}
+ ṽ−4I E

[
h−1L0

I(Xi)
4ε4i
] {
−z(z2 − 3)/24

}
+ ṽ−4I E

[
h−1

(
L0
I(Xi)

2v(Xi)− E[L0
I(Xi)

2v(Xi)]
)
L0
I(Xi)

2ε2i
] {
z(z2 − 1)/4

}
+ ṽ−4I E

[
h−2L1

I(Xi, Xj)L0
I(Xi)L0

I(Xj)
2ε2jv(Xi)

] {
z(z2 − 3)

}
+ ṽ−4I E

[
h−2L1

I(Xi, Xj)L0
I(Xi)

(
L0
I(Xj)

2v(Xj)− E[L0
I(Xj)

2v(Xj)]
)
ε2i
]
{−z}

+ ṽ−4I E
[
h−1

(
L0
I(Xi)

2v(Xi)− E[L0
I(Xi)

2v(Xi)]
)2] {−z(z2 + 1)/8

}
.

For computation, note that the tenth and eleventh terms can be rewritten by factoring
the expectation, after rearranging the terms using the fact that rp̃(Xdn,j)

′G̃−1rp̃(Xdn,i)
is a scalar, as follows:

E
[
h−3L0

I(Xj)
2rp̃(Xdn,j)

′G̃−1(Krp̃)(Xdn,i)L0
I(Xi)rp̃(Xdn,j)

′G̃−1(Krp̃)(Xdn,k)L0
I(Xk)ε2i ε

2
k

]
= E

[
h−1L0

I(Xi)ε
2
i (Kr

′
p̃)(Xdn,i)G̃

−1
]
E
[
h−1rp̃(Xdn,j)L0

I(Xj)
2rp̃(Xdn,j)

′G̃−1
]
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× E
[
h−1(Krp̃)(Xdn,k)L0

I(Xk)ε2k
]
.

This will greatly ease implementation.
The final ingredient required to define the QUS,k and QRBC,k terms is the bias. The

expressions in Equations (S.2.1) and (S.2.4) can not be used as these are random. Instead,
their fixed-n analogues will appear. To this end, define

B̃US =
ν!

(p+ 1)!
e′ν

(
Γ̃−1+,pΛ̃+,pµ

(p+1)
+ − Γ̃−1−,pΛ̃−,pµ

(p+1)
−

)
and

B̃BC =
µ
(p+2)
+

(p+ 2)!
ν!e′νΓ̃

−1
+,p

{
Λ̃+,p,2 − ρ−1Λ̃+,pe

′
p+1Γ̃

−1
+,qΛ̃+,q

}
−

µ
(p+2)
−

(p+ 2)!
ν!e′νΓ̃

−1
−,p

{
Λ̃−,p,2 − ρ−1Λ̃−,pe′p+1Γ̃

−1
−,qΛ̃−,q

}
,

where

• Γ̃+,p = E[Γ+,p], Λ̃+,p = E[Λ+,p], and so forth.

Finally, the QUS,k and QRBC,k terms are defined as follows, where as usual I stands in
for either IUS or IRBC,

QI,1 = 2φ(zα/2)QI,1(zα/2)

QI,2 = 2φ(zα/2)QI,2(zα/2)B̃2
I

QI,3 = 2φ(zα/2)QI,3(zα/2)B̃I

(S.2.8)

S.3. MAIN RESULTS: COVERAGE ERROR AND EDGEWORTH EXPANSIONS

We now state the main theoretical results: Edgeworth expansion for the distributions of
the t-statistics

TUS =

√
nh1+2ν(τ̂ν,US − τν)

v̂US
and TRBC =

√
nh1+2ν(τ̂ν,BC − τν)

v̂BC
. (S.3.1)

The point estimators are given in Equations (S.1.3) and (S.2.2) and the standard errors
are in (S.2.7).

Before stating the results, more notation is needed. In addition to the terms QI,k,
k = 1, 2, 3, two other terms appear in the Edgeworth expansion for the t-statistic, which
then cancel upon computing coverage error due to symmetry. These are

QI,4(z) = ṽ−3I E
[
h−1L0

I(Xi)
3ε3i
] {

(2z2 − 1)/6
}

and QI,5(z) = −ṽ−1I .

The coverage error expansions follow immediately from the results below by taking the
difference of expansions at z1−α/2 and zα/2. It is clearest to state separate results for TUS
and TRBC. For the standard, or undersmoothing, approach, we have the following result.

Theorem S.3.1. (Edgeworth Expansion for TUS) Suppose Assumptions S.1.1 and
S.1.2 hold with S ≥ p + 1. If nh/ log(nh)2+γ → ∞ and

√
nhhp+1 log(nh)1+γ → 0, for

any γ > 0, then

sup
z∈R
|P[TUS < z]− Φ(z)− φ(z)EUS(z)| = εUS,

9



where εUS = o((nh)−1) +O(nh3+2p+2a + hp+1+a) and

EUS(z) =
1

nh
QIUS,1+nh3+2pQIUS,2B̃

2
US+h

p+1QIUS,3B̃US+
1√
nh
QIUS,4(z)+

√
nhhp+1B̃USQ5,IUS(z).

This immediately yields the follow result for optimal undersmoothing, analogous to the
result for robust bias correction in the paper.

Corollary S.3.1. Let the conditions of Theorem S.3.1 hold. Then the fastest coverage
error decay possible is P[τν ∈ IUS(h)] = (1 − α) + O

(
n−(p+1)/(p+2)

)
and is attained by

choosing h � n−1/(p+2). In particular, if QUS,k 6= 0, k = 1, 2, 3, the optimal bandwidth is
given by

hUS = HUSn
−1/(p+2), with HUS = arg min

H>0

∣∣∣∣ 1

H
QIUS,1 +H3+2pQIUS,2 +H1+pQIUS,3

∣∣∣∣ .
Turning to robust bias correction, we differentiate between the case when S ≥ p + 2,

allowing all bias terms to be characterized, and the case when there is not sufficient
smoothness to do so.

Theorem S.3.2. (Edgeworth Expansions for TRBC) Suppose Assumptions S.1.1 and
S.1.2 hold. Assume nh/ log(nh)2+γ →∞ for any γ > 0 and ρ = h/b→ ρ̄ <∞.

(a) If S ≥ p+ 2 and
√
nhhp+2(1 + ρ−1) log(nh)1+γ → 0 for any γ > 0 then

sup
z∈R
|P[TRBC < z]− Φ(z)− φ(z)ERBC(z)| = εRBC,

where εRBC = o((nh)−1) +O(nh5+2p+2a + hp+2+a) and

ERBC(z) =
1

nh
φ(z)QIRBC,1 + nh5+2pφ(z)QIRBC,2B̃

2
BC + hp+2φ(z)QIRBC,3B̃BC

+
1√
nh
QIRBC,4(z) +

√
nhhp+1B̃BCQ5,IRBC(z).

(b) If S ≥ p+ 1 and
√
nhhp+1(1 + ρ−1) log(nh)1+γ → 0 for any γ > 0 then

sup
z∈R

∣∣∣∣P[TRBC < z]− Φ(z)− 1

nh
φ(z)QIRBC,1 −

1√
nh
φ(z)QIRBC,4(z)−ΨTRBC

Q5,IRBC(z)

∣∣∣∣ = εRBC,

where εRBC = o((nh)−1) +O(nh3+2p+2a + hp+1+a) and

ΨTRBC
=
√
nh ν!e′νΓ̃

−1
+,pE

[{
h−1(K+rp)(Xh,i)− ρp+1Λ̃+,pe

′
p+1Γ̃

−1
+,qb

−1(K+rp+1)(Xb,i)
}

× (µ+(Xi)− rp+1(Xi − c)′β+,p+1)

]
−
√
nh ν!e′νΓ̃

−1
−,pE

[{
h−1(K−rp)(Xh,i)− ρp+1Λ̃−,pe

′
p+1Γ̃

−1
−,qb

−1(K−rp+1)(Xb,i)
}

× (µ−(Xi)− rp+1(Xi − c)′β−,p+1)

]
,

with β+,k the k+ 1 vector with (j+ 1) element equal to µ
(j)
+ (c)/j! for j = 0, 1, . . . , k

as long as j ≤ S, and zero otherwise, and similarly for β−,k.
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S.4. PROOFS FOR MAIN RESULTS

We now present proofs for the main theoretical results. We present details for Theorem
S.3.1, as the proof for Theorem S.3.2 is largely similar; a brief discussion is given. We first
prove the validity of the expansion, deferring computation of the terms to a subsection
below. We will rely on some technical results from the supplement to Calonico, Cattaneo,
and Farrell (2019), which in general contains more detailed proofs, though in the context
of nonparametric regression rather than RD.

The first step in the proof is to show that

P [TUS < z] = P
[
T̆ < z

]
+ o

(
(nh)−1 + hp+1 + nh3+2p

)
, (S.4.1)

for a smooth function T̆ := T̆ ((nh)−1/2
∑n
i=1Zi), where Zi a random vector consisting of

functions of the data, that, among other requirements, obeys Cramér’s condition under
our assumptions.

Define

• sn =
√
nh.

The t-statistic at hand is

TUS =

√
nh1+2ν(τ̂ν,US − τν)

v̂US
=
snν!e′ν

(
Γ−1+,pΩ+,p (Y −Rβ+,p)− Γ−1−,pΩ−,p (Y −Rβ−,p)

)
/n

v̂US
.

The numerator is already a smooth function of well-behaved random variables (obeying
Cramér’s condition in particular), therefore the difference between TUS and T̆ lies in the
denominator. Recall from (S.2.7) that

V̂ = v̂2US =
h

n
ν!2e′ν

(
Γ−1+,pΩ+,pΣ̂+,pΩ

′
+,pΓ

−1
+,p + Γ−1−,pΩ−,pΣ̂−,pΩ

′
−,pΓ

−1
−,p

)
eν .

As with the numerator, the Γ•,p matrices are already in the appropriate form. We must

expand the “meat” portions, hΩ+,pΣ̂+,pΩ
′
+,p/n and hΩ−,pΣ̂−,pΩ

′
−,p/n, and their esti-

mated residuals. The expansions for the two, being additive, can be done separately. We
state only the “+” terms. Let ε+,i = Yi(1)− µ+(Xi). Then expand

h

n
Ω+,pΣ̂+,pΩ

′
+,p =

1

nh

n∑
i=1

(K2
+rpr

′
p)(Xh,i)

(
Yi − rp(Xi − c)′β̂+

)2
=

1

nh

n∑
i=1

(K2
+rpr

′
p)(Xh,i)

(
εi + [µ+(Xi)− rp(Xi − c)′β+,p]

+ rp(Xi − c)′
[
β+,p − β̂+

] )2
=

1

nh

n∑
i=1

(K2
+rpr

′
p)(Xh,i)

(
εi + [µ+(Xi)− rp(Xi − c)′β+,p]

− rp(Xh,i)
′Γ−1+,pΩ+,p [Y −Rβ+,p] /n

)2
.

(S.4.2)
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Define

V +
1 =

1

nh

n∑
i=1

(K2
+rpr

′
p)(Xh,i)ε

2
i ,

V +
2 =

1

nh

n∑
i=1

(K2
+rpr

′
pr
′
p)(Xh,i)εiΓ

−1
+,pΩ+,p [Y −Rβ+,p] /n,

V +
3 =

1

nh

n∑
i=1

(K2
+rpr

′
p)(Xh,i) [µ+(Xi)− rp(Xi − c)′β+,p]

2
,

V +
4 =

1

nh

n∑
i=1

(K2
+rpr

′
p)(Xh,i) {εi [µ+(Xi)− rp(Xi − c)′β+,p]} ,

V +
5 =

1

nh

n∑
i=1

(K2
+rpr

′
pr
′
p)(Xh,i) [µ+(Xi)− rp(Xi − c)′β+,p] Γ

−1
+,pΩ+,p [Y −Rβ+,p] /n,

V +
6 =

1

nh

n∑
i=1

(K2
+rpr

′
p)(Xh,i)

{
rp(Xh,i)

′Γ−1+,pΩ+,p [Y −Rβ+,p] /n
}2
,

and

V̆ +
5 =

p∑
li=0

p∑
lj=0

[
Γ−1+,p

]
li,lj

E
[
(K2

+rpr
′
p)(Xh,i)(Xh,i)

li (µ+(Xi)− rp(Xi − c)′β+,p)
]

× 1

nh

n∑
j=1

{
K+(Xh,j)(Xh,j)

lj (Yj − rp(Xj − c)′β+,p)

}
,

V̆ +
6 =

p∑
li1=0

p∑
li2=0

p∑
lj1=0

p∑
lj2=0

[
Γ−1+,p

]
li1 ,lj1

[
Γ−1+,p

]
li2 ,lj2

E
[
h−1(K2

+rpr
′
p)(Xh,i)(Xh,i)

li1+li2
]

× 1

(nh)2

n∑
j=1

n∑
k=1

K+(Xh,j)(Xh,j)
lj1 (Yj − rp(Xj − c)′β+,p)K+(Xh,k)(Xh,k)lj2 (Yk − rp(Xk − c)′β+,p) .

where
[
Γ−1+,p

]
li,lj

is the {li + 1, lj + 1} element of Γ−1+,p, and similarly define the corre-

sponding “−” versions of all these.
With these definitions in hand, rewrite V̂ = v̂2US as

v̂2US = ν!2e′νΓ
−1
+,p

(
V +
1 + 2V +

4 − 2V +
2 + V +

3 − 2V +
5 + V +

6

)
Γ−1+,peν

+ ν!2e′νΓ
−1
−,p

(
V −1 + 2V −4 − 2V −2 + V −3 − 2V −5 + V −6

)
Γ−1−,peν

and let

v̆2US = ν!2e′νΓ
−1
+,p

(
V +
1 − 2V +

2 + 2V +
4 − 2V̆5 + V̆6

)
Γ−1+,peν

+ ν!2e′νΓ
−1
−,p

(
V −1 − 2V −2 + 2V −4 − 2V̆ −5 + V̆ −6

)
Γ−1−,peν .

Then, referring back to Equation (S.4.1), we have

P [TUS < z] = P
[
T̆ + Un < z

]
,
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with

Un =
(
v̂−1US − v̆−1US

)
snν!e′ν

(
Γ−1+,pΩ+,p (Y −Rβ+,p)− Γ−1−,pΩ−,p (Y −Rβ−,p)

)
/n

and

T̆ = v̆−1US snν!e′ν
(
Γ−1+,pΩ+,p (Y −Rβ+,p)− Γ−1−,pΩ−,p (Y −Rβ−,p)

)
/n.

As required, T̆ := T̆ (s−1n
∑n
i=1Zi) is a smooth function of the sample average of Zi =

(Z+
i

′
,Z−i

′
)′, where Z+

i is defined as

Z+
i =

({
(K+rp)(Xh,i)(Yi − rp(Xi − c)′β+,p)

}′
,

vech
{

(K+rpr
′
p)(Xh,i)

}′
,

vech
{

(K2
+rpr

′
p)(Xh,i)ε

2
+,i

}′
,

vech
{

(K2
+rpr

′
p)(Xh,i)(Xh,i)

0ε+,i

}′
, vech

{
(K2

+rpr
′
p)(Xh,i)(Xh,i)

1ε+,i

}′
,

vech
{

(K2
+rpr

′
p)(Xh,i)(Xh,i)

2ε+,i

}′
, . . . , vech

{
(K2

+rpr
′
p)(Xh,i)(Xh,i)

pε+,i

}′
,

vech
{

(K2
+rpr

′
p)(Xh,i)

{
ε+,i

[
µ(Xi)− rp(Xi − c)′β+,p

]}}′)′
,

and Z−i is analogous. In order of their listing above, these pieces come from (i) the
“score” portion of the numerator, (ii) the “Gram” matrix Γ+,p, (iii) V +

1 , (iv) V +
2 , and

(v) V +
4 . Notice that V̆ +

5 and V̆ +
6 do not add any additional elements to Zi.

Equation (S.4.1) now follows from the Delta method for Edgeworth expansions (see
Lemma S.II.1 of Calonico, Cattaneo, and Farrell, 2019 and discussion there) if we can
show that

r−1IUS P[|Un| > rn] = o(1), (S.4.3)

where rIUS = max{s−2n , nh3+2p, hp+1} and rn = o(rIUS).
For a point v̄2 ∈ [v̆2US, v̂

2
US], a Taylor expansion gives

v̂−1US − v̆−1US = −1

2

v̂2US − v̆2US
v̆3US

+
3

8

(
v̂2US − v̆2US

)2
v̄5

.

Therefore, if
∣∣v̂2US − v̆2US

∣∣ = op(1), the result in (S.4.3) will hold once we have shown that

r−1IUS P
[∣∣(v̂2US − v̆2US

) (
snν!e′ν

(
Γ−1+,pΩ+,p (Y −Rβ+,p)− Γ−1−,pΩ−,p (Y −Rβ−,p)

)
/n
)∣∣ > rn

]
= r−1IUS P

[∣∣∣∣∣ (ν!2e′νΓ
−1
+,p

(
V +
3 − 2[V +

5 − V̆
+
5 ] + [V +

6 − V̆
+
6 ]
)

Γ−1+,peν

)
×
(
ν!2e′νΓ

−1
−,p

(
V −3 − 2[V −5 − V̆

−
5 ] + [V −6 − V̆

−
6 ]
)

Γ−1−,peν

)
×
(
snν!e′ν

(
Γ−1+,pΩ+,p (Y −Rβ+,p)− Γ−1−,pΩ−,p (Y −Rβ−,p)

)
/n
)∣∣∣∣∣ > rn

]
= o(1).
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Recall that rIUS = max{s−2n , nh3+2p, hp+1} and rn = o(rIUS). The result then follows by
the same argument as Section S.II.5.1 of Calonico, Cattaneo, and Farrell (2019); cf. their
Equation (S.II.23) and notice that all products of “+” and “−” are zero because of their
respective indicator functions.

Thus we have established Equation (S.4.1). Section S.II.5.2 of Calonico, Cattaneo, and
Farrell (2019) shows that

∑n
i=1 V[Zi]

−1/2(Zi−E[Zi])/
√
n obeys an Edgeworth expansion.

From this, we deduce that T̆ = T̆
(
V[Zi]

1/2Sn + nE[Zi]/sn
)

has its own expansion by

Skovgaard (1986), and the result for TUS holds by combining the expansion for T̆ with
Equation (S.4.1). This completes the proof of Theorem S.3.1. 2

Let us turn to Theorem S.3.2. The starting point of the proof is the same as that of
Theorem S.3.1: the t-statistic. Looking at the two t-statistics in (S.3.1), and the definitions
of the respective point estimators, (S.1.3) and (S.2.2), and standard errors, (S.2.7), we see
that the only substantive differences are the matrices Ω±,•. The estimated residuals are of
the same form as above, with only the bandwidth and polynomial order changed. These
changes are reflected in the expansion already. The key is thus to redo the expansion of
(S.4.2) with Ω±,BC in place of Ω±,p. The latter lead to the weights (K2

+rpr
′
p)(Xh,i), and

these are simply replaced by(
(K+rp)(Xh,i)−ρp+1Λ+,pe

′
p+1Γ

−1
+,q(K+rp+1)(Xb,i)

)(
(K+rp)(Xh,i)−ρp+1Λ+,pe

′
p+1Γ

−1
+,q(K+rp+1)(Xb,i)

)′
.

The same steps are then repeated and hold exactly as before, with the corresponding
changes to the rates and terms of the expansion. These are all built into the notation.
For more details, see Section S.II.6 of Calonico, Cattaneo, and Farrell (2019). 2

S.4.1. Computing the Terms of the Expansion

Computing the terms of the Edgeworth expansions of Theorems S.3.1 and S.3.2, listed
in Section S.2.3, is straightforward but tedious. We give a short summary here, following
the essential steps of (Hall, 1992, Chapter 2) and Calonico, Cattaneo, and Farrell (2019).

In what follows, will always discard higher order terms and write A
o
= B to denote

A = B + o((nh)−1 + hp+1 + nh3+2p).
We will need much of the notation defined in Section S.2.3. As there, let G̃+ stand in

for Γ̃+,p or Γ̃+,q and similarly for G̃−, p̃ stand in for p or p+ 1, and dn stand in for h or
b, all depending on if T = TUS or TRBC. Note however, that h is still used in many places,
in particular for stabilizing fixed-n expectations, for TRBC. Indexes i, j, and k are always
distinct (i.e. Xh,i 6= Xh,j 6= Xh,k).

The steps to compute the expansion are as follows. First, we compute a Taylor expan-
sion of T around nonrandom denominators, including both v̂−1 and G̃−1. The cumulants
of this linearized version are the approximate cumulants of T itself, which determine the
terms of the expansion, as described by Bhattacharya and Rao (1976) and Hall (1992).

It is important to note that the functions L0
I(Xi) and L1

I(Xi, Xj) already include terms
to the left and right of the cutoff. The same is true of

εi = 1{Xi < c}ε−,i + 1{Xi ≥ c}ε+,i
v(Xi) = 1{Xi < c}σ2

−(Xi) + 1{Xi ≥ c}σ2
+(Xi).

Notice that, because of the indicator functions for each side, products such as L0
I(Xi)

2

or L0
I(Xi)L1

I(Xi, Xj) or L0
I(Xi)ε

2
i , etc., are always correct.
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The Taylor expansion is

T
o
=

{
1− 1

2ṽ2I
(WI,1 +WI,2 +WI,3) +

3

8ṽ4I
(WI,1 +WI,2 +WI,3)

2

}
× ṽ−1I {EI,1 + EI,2 + EI,3 +BI,1} ,

where

WI,1 =
1

nh

n∑
i=1

{
L0
I(Xi)

2
(
ε2i − v(Xi)

)}
− 2

1

n2h2

n∑
i=1

n∑
j=1

{
L0
I(Xi)

2rp̃(Xdn,i)
′
(
G̃−1+ + G̃−1−

)
((K+ +K−)rp̃)(Xdn,i)εiεj

}
+

1

n3h3

n∑
i=1

n∑
j=1

n∑
k=1

{
L0
I(Xi)

2rp̃(Xdn,i)
′
(
G̃−1+ + G̃−1−

)
((K+ +K−)rp̃)(Xdn,i)εjεk

}
,

WI,2 =
1

nh

n∑
i=1

{
L0
I(Xi)

2v(Xi)
2 − E[L0

I(Xi)
2v(Xi)

2]
}

+ 2
1

n2h2

n∑
i=1

n∑
j=1

L2
I(Xi, Xj)L0

I(Xi)v(Xi),

WI,3 =
1

n3h3

n∑
i=1

n∑
j=1

n∑
k=1

L1
I(Xi, Xj)L1

I(Xi, Xk)v(Xi) + 2
1

n3h3

n∑
i=1

n∑
j=1

n∑
k=1

L2
I(Xi, Xj , Xk)L0

I(Xi)v(Xi),

BI,1 = sn
1

nh

n∑
i=1

L0
I(Xi) ([µ+(Xi)− rp̃(Xi − x)′β+,p̃]− [µ−(Xi)− rp̃(Xi − x)′β−,p̃]) ,

EI,1 = sn
1

nh

n∑
i=1

L0
I(Xi)εi,

EI,2 = sn
1

(nh)2

n∑
i=1

n∑
j=1

L1
I(Xi, Xj)εi,

EI,3 = sn
1

(nh)3

n∑
i=1

n∑
j=1

n∑
k=1

L2
I(Xi, Xj , Xk)εi,

with the final line defining L2
I(Xi, Xj , Xk) in the obvious way following L1

I , i.e. taking
account of the next set of remainders. Terms involving L2

I(Xi, Xj , Xk) are higher-order,
which is why L2

I is not needed in Section S.2.3.

Straightforward moment calculations yield, where “E[T ]
o
=” denotes moments of the

Taylor expansion above,

E[T ]
o
= ṽ−1I E [BI,1]− 1

2ṽ2I
E [WI,1EI,1] ,

E[T 2]
o
=

1

ṽ2I
E
[
E2
I,1 + E2

I,2 + 2EI,1EI,2 + 2EI,1EI,3
]

− 1

ṽ4I
E
[
WI,1E

2
I,1 +WI,2E

2
I,1 +WI,3E

2
I,1 + 2WI,2EI,1EI,2

]
+

1

ṽ6I
E
[
W 2
I,1E

2
I,1 +W 2

I,2E
2
I,1

]
+

1

ṽ2I
E
[
B2
I,1

]
− 1

ṽ4I
E [WI,1EI,1BI,1] ,
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E[T 3]
o
=

1

ṽ3I
E
[
E3
I,1

]
− 3

2ṽ5I
E
[
WI,1E

3
I,1

]
+

3

ṽ3I
E
[
E2
I,1BI,1

]
,

and

E[T 4]
o
=

1

ṽ4I
E
[
E4
I,1 + 4E3

I,1EI,2 + 4E3
I,1EI,3 + 6E2

I,1E
2
I,3

]
− 2

ṽ6I
E
[
WI,1E

4
I,1 +WI,2E

4
I,1 + 4WI,2E

3
I,1EI,2 +WI,3EI,1

]
+

3

ṽ8I
E
[
W 2
I,1E

4
I,1 +W 2

I,2E
4
I,1

]
+

4

ṽ4I
E
[
E3
I,1BI,1

]
− 8

ṽ6I
E
[
WI,1E

3
I,1BI,1

]
+

6

ṽ4I
E
[
E2
I,1B

2
I,1

]
.

Computing each factor, we get the following results. For these terms below, indexes i, j,
and k are always distinct (i.e. Xh,i 6= Xh,j 6= Xh,k). First, E [BI,1] is simply the fixed-n
version of the bias terms.

E [WI,1EI,1]
o
= s−1n E

[
h−1L0

I(Xi)
3ε3i
]
,

E
[
E2
I,1

] o
= ṽ2I ,

E [EI,1EI,2]
o
= s−2n E

[
h−1L1

I(Xi, Xi)L0
I(Xi)ε

2
i

]
,

E
[
E2
I,2

] o
= s−1n E

[
h−2L1

I(Xi, Xj)
2ε2i
]
,

E [EI,2EI,3]
o
= s−2n E

[
h−2L2

v(Xi, Xj , Xj)L0
I(Xi)ε

2
i

]
,

E
[
WI,1E

2
I,1

] o
= s−2n

{
E
[
h−1L0

I(Xi)
4
(
ε4i − v(Xi)

2
)]

− 2ṽ2IE
[
h−1L0

I(Xi)
2rp̃(Xdn,i)

′
(
G̃−1+ + G̃−1−

)
G̃−1((K+ +K−)rp̃)(Xdn,i)ε

2
i

]
− 4E

[
h−1L0

I(Xi)
4rp̃(Xdn,i)

′
(
G̃−1+ + G̃−1−

)
ε2i

]
E
[
h−1((K+ +K−)rp̃)(Xdn,i)L0

I(Xi)ε
2
i

]
+ ṽ2IE

[
h−2L0

I(Xi)
2
(
rp̃(Xdn,i)

′
(
G̃−1+ + G̃−1−

)
((K+ +K−)rp̃)(Xdn,j)

)2
ε2j

]
+ 2E

[
h−1L0

I(Xj)
2
(
E
[
h−1rp̃(Xdn,j)

′
(
G̃−1+ + G̃−1−

)
× ((K+ +K−)rp̃)(Xdn,i)L0

I(Xi)ε
2
i |Xj

])2]}
,

E
[
WI,2E

2
I,1

] o
= s−2n

{
E
[
h−1

(
L0
I(Xi)

2v(Xi)− E[L0
I(Xi)

2v(Xi)]
)
L0
I(Xi)

2ε2i
]

+ 2ṽ2IE
[
h−1L1

I(Xi, Xi)L0
I(Xi)v(Xi)

]}
,

E [WI,2EI,1EI,2]
o
= s−2n

{
E
[
h−2

(
L0
I(Xj)

2v(Xj)− E[L0
I(Xj)

2v(Xj)]
)
L1
I(Xi, Xj)L0

I(Xi)ε
2
i

]
+ 2E

[
h−3L1

I(Xi, Xj)L1
I(Xk, Xj)L0

I(Xi)L0
I(Xk)v(Xi)ε

2
k

]}
,

E
[
WI,3E

2
I,1

] o
= s−2n

{
ṽ2IE

[
h−2

(
L1
I(Xi, Xj)

2 + 2L2
I(Xi, Xj , Xj)

)
v(Xi)

]}
,

E
[
W 2
I,1E

2
I,1

] o
= s−2n

{
ṽ2IE

[
h−1L0

I(Xi)
4
(
ε4i − v(Xi)

2
)]

+ 2E
[
h−1L0

I(Xi)
3ε3i
]2}

,
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E
[
W 2
I,2E

2
I,1

] o
= s−2n ṽ2I

{
E
[
h−1

(
L0
I(Xi)

2v(Xi)− E[L0
I(Xi)

2v(Xi)]
)2]

+ 4E
[
h−2

(
L0
I(Xi)

2v(Xi)− E[L0
I(Xi)

2v(Xi)]
)
L1
I(Xj , Xi)L0

I(Xj)v(Xj)
]

+ 4E
[
h−3L1

I(Xi, Xj)L0
I(Xi)v(Xi)L1

I(Xk, Xj)L0
I(Xk)v(Xk)

]}
,

E [WI,1EI,1BI,1]
o
= E [WI,1EI,1]E [BI,1] ,

E
[
E3
I,1

] o
= s−1n E

[
h−1L0

I(Xi)
3ε3i
]
,

E
[
WI,1E

3
I,1

] o
= E

[
E2
I,1

]
E [WI,1EI,1] ,

E
[
E4
I,1

] o
= 3ṽ4I + s−2n E

[
h−1L0

I(Xi)
4ε3i
]
,

E
[
E3
I,1EI,2

] o
= s−2n 6ṽ2IE

[
h−1L1

I(Xi, Xi)L0
I(Xi)ε

2
i

]
,

E
[
E3
I,1EI,3

] o
= s−2n 3ṽ2IE

[
h−2L2

I(Xi, Xj , Xj)L0
I(Xi)ε

2
i

]
,

E
[
E2
I,1E

2
I,2

] o
= s−2n

{
ṽ2IE

[
h−2L1

I(Xi, Xj)
2ε2i
]

+ 2E
[
h−3L1

I(Xi, Xj)L1
I(Xk, Xj)L0

I(Xi)L0
I(Xk)ε2i ε

2
k

]}
,

E
[
WI,1E

4
I,1

] o
= s−2n

{
E
[
h−1L0

I(Xi)
3ε3i
]
E
[
h−1L0

I(Xi)
3ε3i
]

+ 6E
[
E2
I,1

]
E
[
WI,1E

2
I,1

]}
,

E
[
WI,2E

4
I,1

] o
= s−2n ṽ2I6

{
E
[
h−1

(
L0
I(Xi)

2v(Xi)− E[L0
I(Xi)

2v(Xi)]
)
L0
I(Xi)

2ε2i
]

+ 2E
[
h−2L1

I(Xi, Xj)L0
I(Xi)L0

I(Xj)
2ε2jv(Xi)

]
+ E

[
h−1L1

I(Xi, Xi)L0
I(Xi)v(Xi)

]}
,

E
[
WI,2E

3
I,1EI,2

] o
= 3E

[
E2
I,1

]
E [WI,2EI,1EI,2] ,

E
[
WI,3E

4
I,1

] o
= 3E

[
E2
I,1

]
E
[
WI,3E

2
I,1

]
,

E
[
W 2
I,1E

4
I,1

] o
= 3E

[
E2
I,1

]
E
[
W 2
I,1E

2
I,1

]
,

E
[
W 2
I,2E

4
I,1

] o
= 3E

[
E2
I,1

]
E
[
W 2
I,2E

2
I,1

]
.

The so-called approximate cumulants of T , denoted here by κI,k for the kth cumulant,
can now be directly calculated from these approximate moments using standard formulas,
such as Equation (2.6) of Hall (1992) which then become the terms of the expansion. See
Hall (1992) for the general case and Calonico, Cattaneo, and Farrell (2018, 2019) in the
context of nonparametric regression.

S.5. DETAILS OF PRACTICAL IMPLEMENTATION

We now give details on practical issues that are discussed in the main text. These include
the direct plug-in (DPI) rule to implement the coverage-error optimal bandwidth, vari-
ance estimation (bias estimation is discussed in Section S.2.1), and the optimal choices
ρ∗. These methods are implemented in R and STATA via the rdrobust package, available
from http://sites.google.com/site/rdpackages/rdrobust.

S.5.1. Bandwidth Choice: Direct Plug-In (DPI)

In order to implement the plug-in bandwidth ĥRBC, we always set K = L and q = p+ 1.
The main steps are:

(1) As a pilot bandwidth, use ĥMSE: any data-driven version of hMSE.
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(2) Using this bandwidth, estimate β̂+,q and β̂−,q on each side of the threshold. Then,

form ε̂+,i = Yi − rq(Xi − c)′β̂+,q and ε̂−,i = Yi − rq(Xi − c)′β̂−,q.

(3) Using the pilot bandwidth and a choice of ρ, estimate the terms QRBC,k, k = 1, 2, 3.
As discussed more just below, from the formulas in Section S.2.3, the estimates are
defined by replacing:

(i) h with ĥMSE,
(ii) population expectations with sample averages,
(iii) residuals εi with ε̂i, and
(iv) limiting matrices with the corresponding sample versions using the pilot band-

width.

(4) To estimate the bias constants B̃BC, we follow Fan and Gijbels (1996, Section 4.2)
and estimate derivatives µ(p+2) using a global least squares polynomial fit of order
p+ 4 on each side of the threshold.

(5) Finally we obtain:

ĥRBC = Ĥ n−1/(3+p), Ĥ = arg min
H>0

∣∣∣∣ 1

H
Q̂RBC,1 +H5+2pQ̂RBC,2 +H2+pQ̂RBC,3

∣∣∣∣ ,
Consistency of this bandwidth, meaning ĥRBC/hRBC →P 1, will follow under natural

conditions. In particular, all that is required is consistent estimates for the constants ap-
pearing in QRBC,k, k = 1, 2, 3, as listed in Section S.2.3. The constants involved are fixed-n

computations, and so by “consistent” we mean Q̂RBC,1/QRBC,k →P 1. All of the constants
involved are kernel-weighted population averages, which may or may not involve µ+(x)
and µ−(x) or their derivatives. Using pilot bandwidths these can be consistently esti-
mated by sample analogues.

For example, the obvious estimator of Γ̃−,p(h) = E[h−1(K−rpr
′
p)(Xh,i)] is, for some

pilot bandwidth h̄, Γ−,p(h̄) =
∑n
i=1

(
K−rpr

′
p

)(
(Xi − c)/h̄

)
/nh̄. If nh̄ → ∞, a law

of large numbers yields that Γ−,p(h̄) is consistent for its fixed-n expectation, as in
Γ−,p(h̄)/E[Γ−,p(h̄)] →P 1. If h ∨ h̄ → 0 then the limits of both fixed-n expectations

agree, E[Γ−,p(h̄)]/Γ̃−,p(h)→ 1. This yields the desired result.
The logic for all the remaining terms is similar, with the possible addition of a consistent

estimator for µ+ or µ−, and the associated estimated residuals, variances, and biases.
These are also easily formed based on pilot bandwidths, for example using rule-of-thumb
implementations of the respective MSE-optimal choice for the specific problem. As an
example, consider estimating QRBC,3 = 2φ(zα/2)QRBC,3(zα/2)B̃BC. This requires estimates

of QRBC,3(zα/2) and B̃BC. The former term is QRBC,3(z) = ṽ−4I E[h−1L0
I(Xi)

3ε3i ]
{
z3/3

}
.

First, ṽ−4I can be estimated by employing v̂2T following Section S.2.2: all that is required
is a pilot bandwidth that delivers consistent estimates of µ+ and µ−, for which any ROT
MSE choice will do, and estimates of other sample averages, which follow as above and
can use the same pilot bandwidth. Notice that ṽ2I = E[h−1L0

I(X)2v(X)], and so if we can
estimate this quantity it is obvious that replacing the squaring with cubing estimates the
factor E[h−1L0

I(Xi)
3ε3i ], and altogether we find that Q̂RBC,3(zα/2)(h̄)/QRBC,3(zα/2)(h)→P

1. Estimation of the bias term follows the same way, and we follow Fan and Gijbels (1996,
Section 4.2).
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S.5.2. Alternative Standard Errors

We consider two alternative estimates of Σ+ and Σ− than those presented in Section
S.2.2. First, motivated by the fact that the least-squares residuals are on average too
small, we propose HCk heteroskedasticity-consistent estimators; see MacKinnon (2013)
for details and a recent review. Calonico, Cattaneo, Farrell, and Titiunik (2019) discuss
how they can be applied in the context of local polynomial estimation to construct v̂2I -
HCk, k = 0, 1, 2, 3, where v̂2I -HC0 is the original estimator presented above and the others
use different weights based on projection matrices.

A second option is to use a nearest-neighbor-based variance estimators with a fixed
number of neighbors, following the ideas of Muller and Stadtmuller (1987) and Abadie
and Imbens (2008). To define these, let J be a fixed number and j(i) be the j-th closest

observation to Xi, j = 1, . . . , J , and set ε̂+,i = 1(Xi ≥ c)
√

J
J+1 (Yi −

∑J
j=1 Yj(i)/J),

ε̂−,i = 1(Xi < c)
√

J
J+1 (Yi −

∑J
j=1 Yj(i)/J).

As discussed in Calonico, Cattaneo, and Farrell (2018), both types of residual estima-
tors could be handled in our results under natural modifications.

S.5.3. Equivalent Kernels

We discuss how to optimize the asymptotic variance constant featuring the length of
the RBC confidence interval estimator using the equivalent kernel representation of local
polynomials; see Section 3.2.2 of Fan and Gijbels (1996). Detailed derivations are found
there.

For simplicity, consider the one-sided bias-corrected estimate of µ+, i.e., half of τ̂0,BC =

τ̂0 − hp+1B̂. The same of course holds for the “−” half of τ̂0,BC. Recall the definitions in
and around (S.2.2) and that q = p+ 1. Then we consider

µ̂
(0)
+,BC(c) = µ̂+,BC =

1

n
e′0Γ

−1
+,pΩ+,BCY =

1

n
e′0Γ

−1
+,p

(
Ω+,p − ρp+1Λ+,pe

′
p+1Γ

−1
+,qΩ+,q

)
Y

=:
1

nh

n∑
i=1

KBC
+,p

(
Xh,i;K, ρ

)
Yi,

where the last equality defines the weights (recall the definitions of Ω+,p and Ω+,q)

KBC
+,p

(
x;K, ρ

)
= e′0Γ

−1
+,p

[
(K+rp)(x)− ρp+2Λ+,pe

′
p+1Γ

−1
+,q(K+rq)(ρx)

]
.

This function depends on the sample through Γ+,p, Λ+,p, and Γ+,q. To find the equiva-
lent kernel, we replace these with their limiting versions. Note that here, as opposed to
elsewhere in the paper, we use the population limiting versions, not fixed-n expectations,
i.e. we need the limit of Γ̃+,p = E[Γ+,p]. Under our assumptions, Γ+,p →P f(c)Γ̄+,p,
Λ+,p →P f(c)Λ̄+,p, and Γ−1+,q →P f(c)Γ̄+,q, at sufficient fast rates, such that

µ̂+,BC =
1

nh

n∑
i=1

K̄BC
+,p

(
Xh,i;K, ρ

)
Yi {1 + oP(1)},

where the equivalent kernel is

K̄BC
+,p

(
x;K, ρ

)
=

1

f(c)
e′0Γ̄

−1
+,p

[
(K+rp)(x)− ρp+2Λ̄+,pe

′
p+1Γ̄

−1
+,q(K+rq)(ρx)

]
,
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with

Γ̄+,p =

∫
(K+rpr

′
p)(u)du, Λ̄+,p =

∫
K+(u)rp(u)up+1du and Γ̄+,q =

∫
(K+rqr

′
q)(u)du.

The shape of this equivalent kernel depends on the initial kernel chosen, K(·), and ρ.
Cheng, Fan, and Marron (1997) show that the asymptotic variance of a local polyno-
mial point estimator at a boundary point is minimized by employing the uniform kernel
K(u) = 1(|u| ≤ 1). The resultant equivalent kernel (the “optimal” equivalent kernel) will
be denoted K∗+,p(x) for any p. If the uniform kernel is used when forming IRBC(h), then
ρ = 1 is optimal in terms of minimizing the asymptotic constant featuring the interval
length: that is, ρ = 1 makes the induced equivalent kernel, K̄BC

+,p

(
x;K, ρ

)
, pointwise equal

to the optimal equivalent kernel, K∗+,p+1(x).
However, if a kernel other than uniform is used, we can find the optimal choice of ρ in

terms of minimizing the L2 distance between the induced equivalent kernel, K̄BC
+,p

(
x;K, ρ

)
,

and the optimal variance-minimizing equivalent kernel, K∗+,p+1(x). To be precise, we
compute

ρ∗ = arg min
ρ>0

∫ ∣∣K̄BC
+,p

(
x;K, ρ

)
−K∗+,p+1(x)

∣∣2 dx.
A common choice is the triangular kernel K(u) = (1 − |u|)1(|u| ≤ 1), which Cheng,
Fan, and Marron (1997) show is MSE-optimal (i.e., optimal from a point estimation
perspective). We illustrate the shape of the resulting equivalent kernel under the L2-
optimal choice of ρ in Figure S.1 for the triangular bias-corrected equivalent kernel and
different choices of p. The corresponding values of ρ∗ were given in Table 1 of the paper.
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Figure S.1: K∗+,p+1(x) vs. K̄BC
+,p

(
x;K, ρ∗

)
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